If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+30x=16
We move all terms to the left:
3x^2+30x-(16)=0
a = 3; b = 30; c = -16;
Δ = b2-4ac
Δ = 302-4·3·(-16)
Δ = 1092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1092}=\sqrt{4*273}=\sqrt{4}*\sqrt{273}=2\sqrt{273}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{273}}{2*3}=\frac{-30-2\sqrt{273}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{273}}{2*3}=\frac{-30+2\sqrt{273}}{6} $
| 900+25x=75x | | (2n-5)(n-4)=0 | | 8m+12=9m | | 10=x^-1.3 | | 2x-6x+3=3-4x | | 4096=2(x) | | 1/8(p+24)=8 | | 4(2m+3)=3(3m) | | (m+330)-13=0.2m | | 4(2d-5)=-56 | | Y⁴-2y+y=0 | | Y+6=17x | | 3x+2/8+5(x-1)/9=4x-1/3-5x-6/11 | | 2n+-5=15 | | 7z-9z=12 | | 4(2m+2)=3(3m) | | 3c+3=30 | | -4a+5=a | | 6-x=1÷ | | 25z=1 | | (15-x)/(14-x)=1.25 | | .5p-4=7 | | x-39=-69 | | 7+y.5=-3 | | 6=3x2 | | -2/5x=-23/4 | | -2/5x=-23/54 | | 3(t+2)=1=8 | | 4z^2+11z+6=0 | | 23809523.8095=1.41^x | | -(5)/(8)z=15 | | 3x-20=7x+12 |